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Neutrino	Oscillations:

Neutrino	Mixing:
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(expected	NOvA	Far	
Detector	vμ CC	spectra)

vμ survival	probability:
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Motivation	for	a	Numu Disappearance	Measurement:
1. A	precision	measurement	of	θ23 can	help	determine	the	correct	texture	

for	the	PMNS	matrix.

2. An	accurate	measurement	of	θ23 improves	our	ve appearance	
measurement.

This	talk:
• νμ Disappearance	Results	– first	presented	at	Nu2016																																																																																			

Phys.	Rev.	Lett.	118,	no.	15,	151802	(2017)
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Hierarchy? 𝛅CP?
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The	NOvA	Experiment:			NuMI Beam
NuMI - Neutrinos	at	the	Main	Injector

• provides	a	10	μsec pulse	every	1.33	sec

• beam	is	roughly	98%	vμ



The	NOvA	Experiment:			Detectors

Two	functionally	identical	detectors:

extruded	PVC,	mineral	oil	as	scintillator,	avalanche	photo-
diodes	for	light	collection

• Near: 300	ton,	1	km	from	source,	105	m	underground
• Far: 14	kton,	810	km	from	source,	on	the	surface
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The	NOvA	Experiment:			Detectors

• NOvA	is	a	highly	active	tracking	calorimeter.
• The	detectors	are	designed	with	low-Z	materials	(mineral	oil	and	PVC)	so	as	to	enhance	the	differences	

between	muon	tracks,	showers	caused	by	electrons,	and	showers	caused	by	pi-zeros.
– Moliere	radius	=	11	cm
– EM	radiation	length	=	40	cm 7
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Near Detector Event Display

(colors show hit times)



Far Detector Event Display

(colors show charge)



Far Detector Event Display

(colors show charge) zoomed in on beam window



Near	Detector:

vμ Disappearance	Analysis	Outline:
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Far	Detector:

Select	events Select	events

Reject	cosmics

Reconstruct	event	energies Reconstruct	event	energies

Perform	bin-by-bin	energy	
extrapolation	to	predict	the	far	

detector	spectra.

Use	extrapolated	spectra	to	fit	for	
the	oscillation	parameters.



NOvA	Data	Collection:
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• Feb	6th 2014	– May	2nd 2016,	equivalent	to	6.05	x	1020 POT	(in	a	full	14	kT detector.)
• See	Diana	Mendez’s	talk	(next)	for	improvements	in	the	next	analysis	with	data	

taken	since	May	2nd 2016.

• The	NuMI beam	has	now	reached	the	700	kW	design	goal,	making	it	the	most	
powerful	neutrino	beam	in	the	world!



NOvA Simulation	Tuning:
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• Analysis	of	the	NOvA ND	data	suggested	an	additional	event	rate	and	alteration	of	
the	kinematic	distributions	arising	in	neutrino	scattering	on	nuclei.

• DIS	events	with	W	<	1.7	GeV	were	weighted	down	by	35%.

• We	enabled	an	empirical	Meson	Exchange	Current	(MEC)	model	within	GENIE,	and	
reweighted	those	events	as	a	function	of	3-momentum	transfer.
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Event	Selection:
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• Choose	vμ CC	events	with	a	
traditional	kNN.

• Using	4	reconstructed	track	
variables	as	input.

• See	talk	by	F.Psihas Wed.	08/02	
11:10	am	on	advancements	in	
event	selection.



Far	Detector	Cosmic	Rejection:
• We	expect	~65,000	cosmic	rays	in-time	with	the	NuMI beam	spills	per	day.	The	

expected	number	of	contained	νμ CC	events	per	day	is	only	a	few.

• Containment	cuts	will	remove	99%	of	the	cosmics.

• We	use	a	boosted-decision-tree	(BDT)	algorithm	that	takes	input	from	
reconstruction	variables	to	reject	the	remaining	cosmics.
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All	cuts	together	give	us	>	15:1	s:b.

Cosmics are	reduced	by	107!
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Energy	Estimation:
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Far	Detector	Prediction:
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The	far	detector	prediction	is	generated	using	a	near	to	far	extrapolation	process.

ND	reconstructed	E	spectra



Far	Detector	Prediction:
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The	far	detector	prediction	is	generated	using	a	near	to	far	extrapolation	process.

ND	reconstructed	E	spectra



Far	Detector	Prediction:
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Far	Detector	Prediction:
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Far	Detector	Prediction:
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The	far	detector	prediction	is	generated	using	a	near	to	far	extrapolation	process.

ND	reconstructed	E	spectra



Far	Detector	Prediction:
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The	far	detector	prediction	is	generated	using	a	near	to	far	extrapolation	process.

ND	reconstructed	E	spectra



Far	Detector	Prediction:
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The	far	detector	prediction	is	generated	using	a	near	to	far	extrapolation	process.

ND	reconstructed	E	spectra FD	predicted	E	spectra



Systematics:
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• The	effect	of	many	large	uncertainties	is	reduced	by	the	near-to-far	extrapolation	
technique	(cross	sections,	beam	flux,	etc.)

• Systematics	were	evaluated	using	specially	generated	MC	samples,	and	fit	by	
varying	the	MC	based	steps	in	the	extrapolation.
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vμ CC	Results:
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78	events	selected	in	the	FD
(0	– 5	GeV)

In	the	absence	of	oscillations,	
473	events	are	expected.

(including	2.9	cosmic	and	3.7	
beam	backgrounds.)

Clear	observation	of	νμ
disappearance!
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vμ CC	Results:

Reconstructed neutrino energy (GeV)
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Spectrum	is	well	matched	to	the	
oscillation	parameters	Δm2
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and	θ23.

(All	syst.	uncertainties	fit	as	
nuisance	parameters.)
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Maximal	mixing	is	disfavored	at	2.6s!
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• NOvA is	a	smoothly	running	experiment	with	more	exciting	physics	on	the	way!

• Unambiguous	observation	of	νμ disappearance	which	favors	non-maximal	mixing:

|𝚫m2
32|	=	2.67	± 0.11	x	10-3 eV2

sin2 𝛉23 =	0.404	(+0.030,-0.022)

• We	have	just	recently	finished	a	run	in	anti-neutrino	mode.

• Updated	analyses	are	coming	soon!

NOvA Results	Summary:



Backups:
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Neutrino	Oscillations:

• Neutrinos	can	be	described	in	one	of	two	different	bases:	
flavor	or	mass.

• Neutrino	mixing	is	described	by	3	real	rotation	angles	and	a	CP	
violating	phase	factor,	δ.

• All	three	rotation	angles	have	been	measured,	but	we	don’t	
yet	know	what	delta	is.

flavor PMNS mass

29
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• Including	CP	violation

• Including	the	matter	effect

• Including	non-maximal	Θ23

Resolving	the	θ23 Octant:



Neutrino	Oscillations:
Flavor	oscillation	in	general:

vμ survival	probability:

ve appearance	probability:

32

Δ23

octant hierarchy CP	violation
Is	θ23 >	45° or	
θ23 <	45°?

Is	m3 >	m1 or	is	
m3 <	m1?

Is	δ ≠	0?



Neutrino	Oscillations:
ve appearance	probability:
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Neutrino	Oscillations:
ve appearance	probability:

34

A	simultaneous	measurement	of	
ve appearance	and	ve appearance	
will	help	us	answer	these	open	
questions!
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The	NOvA	Experiment:			NuMI Beam
The	NOvA	experiment	is	14	mrad off-axis:

• gives	us	a	narrowly	peaked	v energy	
spectrum	at	2	GeV

• 2	GeV =	oscillation	max	for	810	km
• helps	reduce	NC	backgrounds
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Ryan Patterson, Caltech Fermilab JETP, August 6, 2015 31 
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Ryan Patterson, Caltech Fermilab JETP, August 6, 2015 32 
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Ryan Patterson, Caltech Fermilab JETP, August 6, 2015 33 



Event	Reconstruction	with	NOvA:	
Clustering:

• Uses	an	expanding	density	based	clustering	algorithm	called	DBSCAN*

• Hits	are	clustered	based	on	a	causality	score	(two	hits	are	neighbors	if	
their	score	is	<	threshold.)

• Cluster	borders	are	defined	by	regions	where	the	neighborhood	density	
drops	below	some	critical	value.

• The	algorithm	expands	from	neighbor	to	neighbor	to	find	all	borders.

Far	Detector: ave. completeness	=	~99% ave. purity	=	~99%
Near	Detector: ave. completeness	=	~94% ave. purity	=	~99%

*			M.	Ester,	et.	al.,	A	
Density-Based	Algorithm	for	
Discovering	Clusters	in	Large	
Spatial	Databases	with	Noise	
(1996)
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Event	Reconstruction	with	NOvA:	

A	far	detector	event	prior	to	
clustering.

• Showing	550	μsec of	data.

• Data	was	taken	when	the	
detector	was	only	partially	
instrumented.
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Event	Reconstruction	with	NOvA:	

A	far	detector	event	after	
clustering	has	been	applied.
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Event	Reconstruction	with	NOvA:	
Particle	Tracking:
• A	tracking	algorithm	is	used	

primarily	to	reconstruct	muons.

• Tracks	are	propagated	”upstream”	in	
the	beam	based	on	a	Kalman filter	
and	using	a	multiple	scattering	
model.
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Far	Detector	Prediction:
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Calibration:
• Compute	the	attenuation	curve	for	each	

fiber	individually	using	through-going	
cosmic	muons.

• This	puts	all	fibers	and	cells	on	an	equal	
footing.
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• Compute	the	absolute	energy	
scale	for	the	whole	detector	
using	stopping	cosmic	muons.

• Look	for	“good”	hits	in	the	MIP	
region	of	the	track.
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Event	Reconstruction	with	NOvA:	
Reconstruction	Flow:

1. Separate	physics	hits	into	groups	that	have	a	common	origin	(neutrino	interaction	or	
cosmic	ray)	while	also	separating	them	from	noise	hits.	These	groups	are	called	“slices.”

2. Apply	alternate	trackers	(a	
Kalman filter	and	a	simple	
straight-line	fitter)	used	for	
event	selection	and	cosmic	
rejection.

2. Identify	the	global	event	vertex.

3. Create	clusters	of	hits	belonging	to	particles.

4. Make	tracks	from	these	clusters	using	a	multiple	
scattering	model.
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Event	Reconstruction	with	NOvA:	
Finding	a	Global	Vertex:
(M.Baird,	M.Messier,	E.Niner)

• A	modified	two-point	Hough	transform	is	used	to	
create	a	set	of	2D	lines	that	reflect	major	event	
features.	*

• The	Hough	lines	are	then	used	as	input	to	the	
vertex	finding	algorithm.

• For	a	generated	list	of	vertex	candidates,	the	
best	vertex	is	the	one	that	minimizes	an	“energy	
cost”	function	based	on	distances	from	hits	to	
“arms.”	**

• A	process	of	simulated	annealing	is	used	to	allow	
the	best	vertex	candidate	to	settle	into	an	
optimal	location.

*			L.	Fernandes and	M.	
Oliveira,	Pattern	
Recognition,	41	(2008)	299-
314.

48

**			M.	Ohlsson,	C.	Peterson,	
Computer	Physics	
Communications,	71	(1992)	
77-98.

For	ve CC,	average	vtx.	res.	=	10.9	cm
For	vμ CC,	average	vtx.	res.	=	11.6	cm
For	NC,	average	vtx.	res.	=	28.8	cm



Energy	Estimation:
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• True	energy	for	the	muon	and	the	hadronic	component	are	converted	from	track	
length	and	summed	calorimetric	energy	(respectively)	using	the	MC.
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Reconstructed neutrino energy (GeV)
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Muon	Neutrino	FD	Data
• 78	events	observed	in	FD
– 473±30	with	no	oscillation	
– 82	at	best	oscillation	fit
– 3.7	beam	BG +	2.9	cosmic	

𝜒2/NDF=41.6/17
Driven	by	fluctuations	in	

tail,	no	pull	in	oscillation	fit
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Scattering	in	a	Nuclear	Environment

• Near	detector	hadronic energy	distribution	
suggests	unsimulated process	between	quasi-
elastic	and	delta	production

Similar	conclusions	from	MINERvA data	
reported	in	P.A.	Rodrigues	et	al.,	
PRL	116	(2016)	071802

P.	Vahle,	Neutrino	2016 51
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Scattering	in	a	Nuclear	Environment

• 50%	systematic	uncertainty	
on	MEC	component

• Reduces	largest	
systematics	
– hadronic energy	scale
– QE	cross	section	modeling

• Reduce	single	non-resonant	
pion	production	by	50%
(P.A.	Rodrigues		et	al,	
arXiv:1601.01888.)	

¨ Enable	GENIE	empirical	Meson	Exchange	Current	Model
¨ Reweight	to	match	NOvA	excess	as	a	function	of	3-
momentum	transfer

MEC	model	by	S.	Dytman,	inspired	by	
J.	W.	Lightbody,	J.	S.	O’Connell,	Computers	in	Physics	2	(1988)	57.

P.	Vahle,	Neutrino	2016 52



Improved	Event	Selection
• This	analysis	features	a	new	event	selection	technique	

based	on	ideas	from	computer	vision	and	deep	learning

¨ Calibrated	hit	maps	are	
inputs	to	Convolutional	
Visual	Network	(CVN)

¨ Series	of	image	processing	
transformations	applied	to	
extract	abstract	features

¨ Extracted	features	used	as	
inputs	to	a	conventional	
neural	network	to	classify	
the	event

A. Aurisano et	al.,	arXiv:1604.01444
Posters	P1.028	by	A.	Radovic,	P1.032	by	
F.	Psihas and	A.	Himmel for	more	detail

P.	Vahle,	Neutrino	2016 53
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A. Aurisano et	al.,	arXiv:1604.01444
Posters	P1.028	by	A.	Radovic,	P1.032	by	
F.	Psihas and	A.	Himmel for	more	detail



Improved	Event	Selection

Improvement	in	sensitivity	from	CVN	
equivalent	to	30%	more	exposure

• This	analysis	features	a	new	event	selection	technique	
based	on	ideas	from	computer	vision	and	deep	learning

¨ Calibrated	hit	maps	are	
inputs	to	Convolutional	
Visual	Network	(CVN)

¨ Series	of	image	processing	
transformations	applied	to	
extract	abstract	features

¨ Extracted	features	used	as	
inputs	to	a	conventional	
neural	network	to	classify	
the	event

P.	Vahle,	Neutrino	2016 55


